Science Physics is a website related to Education. In Education Physics is Science Main Focus is On Physics and Science related Topics and Books. Physics is Science is a website for the Students of Both Physics and Science. This website will be helpful for the students of Physics and Science because this site contains books and notes of different branches of Science and Physics. It Contains books and notes of Different Subjects like Mechanics, Electronics, Nuclear Physics and others.

Einstein mass energy relation Proof Derivation

   Einstein mass energy relation Proof Derivation

 Mass is defined as the property of the body as it resist its change in position when some external force is applied on it. Mass is the quantitative measure of inertia. Energy is defines as the capacity of the body to work it may be of any kind .Energy exits in many shapes in the world. According to Einstein Mass and Energy are interrelated and can be converted from one form to another. Energy can be converted into mass and Mass can be converted into Energy. According to newton’s second law of motion, the force acting on body is equal to rate of change of momentum it produced. If a body of mass m moving with velocity v has a Force F applied to it, then.
Einstein mass energy relation Proof Derivation
Einstein mass energy relation Proof Derivation

F=d/dt (mv)
                 F=m (dv/dt) +v (dm/dt)

If force F acts for small distance dx, the work done Fdx stored in body as its kinetic energy is given by. 
                                          dK=Fdx                                                       
  = (mdv/dt+vdm/dt)
            =mdx/dt.dv + v.dx/dt dm
                                      I.e. dK= mvdv+vdm    ----------------- (1)
    Now                                  m=m0 /√1-v/c2
Squaring on both sides    m2=m20 /1-v2/c2
        I-e                               m2= m20c/c–v2
Now              m2 c2 – m2 v2 = m20 c2
Differentiating on both side we get    
    2mdmc2 -2mdmv2 -2vdvm2 =0
Now      
                                        dmc2 =mvdv+v2 dm          ------------------ (2)
   Comparing 1 and 2, we get  
                                      dK =dmc2
    Integrating   

                                 
0k dK= ∫m0m   dmc2 
       After solving we get
                                        k= (m- m0) c2
                            K+m0 c2 =mc  
       If we donate total energy by E, we get
                                      E=mC2      

       This is known as Einstein mass energy relation Proof Derivation.


Digital Fundamentals By Thomas L. Floyd Pdf Free Download


Previous
Next Post »

No comments:

Post a Comment